Genomic deletion induced by Tol2 transposon excision in zebrafish

نویسندگان

  • Peng Huang
  • Linjie Xu
  • Wei Liang
  • Chi Ian Tam
  • Yutian Zhang
  • Fei Qi
  • Zuoyan Zhu
  • Shuo Lin
  • Bo Zhang
چکیده

Genomic deletions induced by imprecise excision of transposons have been used to disrupt gene functions in Drosophila. To determine the excision properties of Tol2, a popular transposon in zebrafish, we took advantage of two transgenic zebrafish lines Et(gata2a:EGFP)pku684 and Et(gata2a:EGFP)pku760, and mobilized the transposon by injecting transposase mRNA into homozygous transgenic embryos. Footprint analysis showed that the Tol2 transposons were excised in either a precise or an imprecise manner. Furthermore, we identified 1093-bp and 1253-bp genomic deletions in Et(gata2a:EGFP)pku684 founder embryos flanking the 5' end of the original Tol2 insertion site, and a 1340-bp deletion in the Et(gata2a:EGFP)pku760 founder embryos flanking the 3' end of the insertion site. The mosaic Et(gata2a:EGFP)pku684 embryos were raised to adulthood and screened for germline transmission of Tol2 excision in their F(1) progeny. On average, ∼42% of the F(1) embryos displayed loss or altered EGFP patterns, demonstrating that this transposon could be efficiently excised from the zebrafish genome in the germline. Furthermore, from 59 founders, we identified one that transmitted the 1093-bp genomic deletion to its offspring. These results suggest that imprecise Tol2 transposon excision can be used as an alternative strategy to achieve gene targeting in zebrafish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage.

The Tol2 element of the medaka fish Oryzias latipes belongs to the hAT family of transposons (hobo/Ac/Tam3). We report here identification of a functional transposase of Tol2 that is capable of catalyzing its transposition in the germ line of zebrafish Danio rerio. A transcript produced from Tol2 encodes a putative transposase. Zebrafish fertilized eggs were coinjected with mRNA transcribed in ...

متن کامل

Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition.

The Tol2 element is a naturally occurring active transposable element found in vertebrate genomes. The Tol2 transposon system has been shown to be active from fish to mammals and considered to be a useful gene transfer vector in vertebrates. However, cis-sequences essential for transposition have not been characterized. Here we report the characterization of the minimal cis-sequence of the Tol2...

متن کامل

Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells.

The Tol2 transposable element of the Japanese medaka fish belongs to the hAT family of transposons including hobo of Drosophila, Ac of maize, and Tam3 of snapdragon. To date, Tol2 is the only natural transposon in vertebrates that has ever been shown to encode a fully functional transposase. It has not been known, however, whether Tol2 can transpose in vertebrates other than fish. We report her...

متن کامل

Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like.

Gene trap and enhancer trap methods using transposon or retrovirus have been recently described in zebrafish. However, insertional mutants using these methods have not been reported. We report here development of an enhancer trap method by using the Tol2 transposable element and identification and characterization of insertional mutants. We created 73 fish lines that carried single copy inserti...

متن کامل

Harnessing a High Cargo-Capacity Transposon for Genetic Applications in Vertebrates

Viruses and transposons are efficient tools for permanently delivering foreign DNA into vertebrate genomes but exhibit diminished activity when cargo exceeds 8 kilobases (kb). This size restriction limits their molecular genetic and biotechnological utility, such as numerous therapeutically relevant genes that exceed 8 kb in size. Furthermore, a greater payload capacity vector would accommodate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013